terça-feira, 30 de outubro de 2012

Projeto Patronos da Ciência


Os Cientistas que muito contribuíram para a evolução do homem e para expansão do Campo de estudo científico muitas vezes ficam escondidos atrás de seus cálculos e descobertas, restringindo assim as circunstâncias e aspectos que os levaram a chegar a ter sucesso em seus estudos. Os diversos revolucionários da Ciência muitas vezes não partiam simplesmente de uma Ciência basicamente algébrica, mas sim de uma ferramenta útil ao cotidiano do homem. Através desse Projeto, buscamos valorizar a história e a vida dos cientistas que revolucionaram o Campo científico com suas descobertas, evidenciando muitas vezes a relação existente entre os trabalhos dos diversos estudiosos e também como o cotidiano deles influenciavam diretamente em suas descobertas.
Metodologia
Baseado na interdisciplinaridade dos diversos Campos de estudo da Ciência (Matemática, Física, Química e Biologia), alunos e professores discutiram sobre os acontecimentos científicos e a importância do estudo da História das Ciências, após todas as reuniões cada aluno escolheu um Cientista para estudar sua biografia até as suas contribuições no Campo científico. Depois das análises bibliográficas procurou-se criar estratégias para que cada membro do grupo pudessem externar os resultados dos seus estudos para a equipe e em sequencia para a comunidade escolar levando assim até os alunos a importância da valorização da História Científica.
 


 

Biografia de Pitágoras: Vida e obra de um matemático

Pitágoras
Pitágoras representado por Rafael Sanzio em sua celebrada pintura
Pequena Biografia
Pitágoras (570-500 a.C.) foi um matemático grego, tendo sido também lider religioso, místico, sábio e filósofo. Nasceu em Samos, uma ilha grega na costa marítima do que hoje é a Turquia. Viajando a Mileto, uma cidade grega 50 quilômetros a sudeste de Samos, aprendeu Matemática com Tales (624-546 a.C.), considerado o fundador da Matemática grega. Segundo antigos historiadores, Pitágoras viajou para o Egito e para a Babilônia, onde é provável que tenha se encontrado com o profeta Daniel. É provável também que Pitágoras tenha estudado na Índia. Sua crença na reencarnação talvez tenha origem indiana. Um de seus contemporâneos é Buda, e é provável que Pitágoras e Buda tenham se encontrado. Em torno de 525 a.C. Pitágoras mudou-se para Crotona, uma cidade ao sul da Itália, onde fundou a Ordem (Escola) Pitagórica. Casou-se com Teano, provavelmente a primeira mulher matemática da história.

A Escola Pitagórica
O termo Escola Pitagórica se refere a uma escola filosófica no sentido histórico cuja existência se prolongou por mil anos desde sua fundação. O modo de vida e as doutrinas atribuídas a Pitágoras, provenientes de sua escola, recebem o nome de pitagorismo. Segundo historiadores, a Escola Pitagórica tinha um caráter peculiarmente duplo. Por um lado, dedicava-se a questões espirituais: os pitagóricos acreditavam na imortalidade da alma e na reencarnação e tinham a auto-reflexão como um dever consciente e imprescindível na espiritualização da vida. Por outro lado, como parte dessa espiritualização, incluía estudos de Matemática, Astronomia e Música, o que lhe imprimiu um caráter também científico, no sentido moderno da palavra. O estudo da Matemática - confundindo-se com a filosofia, pois "tudo é número" - era feito para promover a harmonia da alma com o cosmo. Dentre os princípios filosóficos que norteavam a escola pitagórica, destacam-se: a alma é imortal e reencarna-se; os acontecimentos da história repetem-se em certos ciclos; nada é inteiramente novo; todas as coisas vivas são afins; os princípios da Matemática são os princípios de todas as coisas.
Dentre os principais nomes da Escola Pitagórica destamos: Filolaus de Tarento (nasceu c. 470 a. C. e morreu c. 390 a. C.), Arquitas de Tarento (nasceu em 428 a. C. aproximadamente) e Hipasus de Metapontum (viveu por volta de 400 a. C.). O pitagorismo influenciou fortemente as obras de Demócrito de Abdera e Platão. Alguns séculos mais tarde houve uma revivência da Escola Pitagórica, e seus protagonistas passaram a ser chamados de neo-pitagóricos. Dentre esses destacamos Nicômaco de Gerasa, que viveu em torno do ano 100.
Tudo é Número
Os Pitagóricos chegaram à razoável conclusão, em seus estudos, de que "tudo são números". Essa afirmação parece ter sido fortemente influenciada por uma descoberta importante da Escola Pitagórica, a explicação da harmonia musical através de frações de inteiros.
Os Pitagóricos notaram haver uma relação matemática entre as notas da escala musical e os comprimentos de uma corda vibrante. Uma corda de determinado comprimento daria uma nota. Reduzida a 3/4 do seu comprimento, daria uma nota uma quinta acima. Reduzida à metade de seu comprimento, daria uma nota uma oitava acima. Assim os números 12, 8 e 6, segundo Pitágoras, estariam em "progressão harmônica", sendo 8 a média harmônica de 12 e 6. A média harmônica de dois números a e b é o número h dado por 1/h = (1/a + 1/b) 2.
Pitágoras dava especial atenção ao número 10, ao qual ele chamava de número divino. Dez era a base de contagem dos gregos, e dez são os vértices da estrela de Pitágoras. "A estrela de Pitágoras" é a estrela de cinco pontas formada pelas diagonais de um pentágono regular. O pentágono regular era de grande significação mística para os Pitagóricos e já era conhecido na antiga Babilônia.



Pentágono de cinco pontas:

figuras de muitos significados para a Matemática e a Filosofia da Escola Pitagórica.
As diagonais do pentágono regular cortam-se em pontos de divisão áurea. O ponto de divisão áurea de um segmento AB é o ponto C desse segmento que o divide de modo que a razão entre a parte menor e a parte maior é igual à razão entre a parte maior e o todo, ou seja, AC/CB = CB/AB. Para os antigos gregos, o retângulo áureo, isto é, de lados proporcionais aos segmentos AC e CB, é o retângulo de maior beleza.

A ÁRVORE DE PITÁGORAS

A figura em forma de árvore da página de abertura do Hipertexto Pitágoras é um fractal tridimensional chamado Árvore de Pitágoras.



Nossa versão da Árvore de Pitágoras foi construída por Yolanda Kioko Saito Furuya com o aplicativo Maple V, adaptando uma figura de Harm Derksen.

João Carlos Vieira Sampaio

A figura da Árvore de Pitágoras nos recorda que a Matemática é às vezes comparada com uma árvore, com raízes (Fundamentos da Matemática), tronco (estruturas numéricas e geométricas) e galhos (os principais são a Álgebra, a Análise e a Geometria). Independentemente de ser ou não apropriada essa comparação, vamos fazer uma breve descrição da Matemática, conforme a vemos hoje.
O que é Matemática.
Os matemáticos, em geral, preferem se abster de definir a Matemática. Penso que isso se deve a um sentimento ou a uma impressão de que, apesar do muito que já foi conseguido no desenvolvimento dessa ciência, algo de grande importância ainda precisa ser compreendido, conforme sugere a citação. Conscientes do caráter efêmero de tudo que é construído pelo homem, talvez seja mais prudente aguardar o amadurecimento dos tempos, e limitar nossas considerações à descrição do que tem sido efetivamente conseguido.
Quanto ao uso da palavra matemática diz a tradição que isso teve origem com Pitágoras. Segundo Anglin [1] pág. 33, a raiz do termo matemática deriva de uma língua Indo-Européia e seu significado é relacionado com a palavra mente.
Referências
[1] Derksen, H., Árvore de Pitágoras, em http://www.maplesoft.com/cybermath/samples.html.
[2] Furuya, Y.K.S., Programa de geração da Árvore de Pitágoras bidimensional. 1998, UFSCar.
[3] Furuya, Y.K.S., Programa de geração da Árvore de Pitágoras tridimensional. 1998, UFSCar.

A representação de Pitágoras foi adaptada da página. http://christusrex.org/www1/stanzas/S2-Segnatura.html. As figuras do pentágono e da estrela de cinco pontas foram preparadas por Roberto Paterlini, do DM-UFSCar, com o Corel 7. As outras figuras foram preparadas por Yolanda Kioko Saito Furuya, do DM-UFSCar.

A crise na Escola Pitagórica
Uma das mais importantes descobertas da Escola Pitagórica foi a de que dois segmentos nem sempre são comensuráveis, ou seja, nem sempre a razão entre os comprimentos de dois segmentos é uma fração de números inteiros (número racional). Essa descoberta foi uma conseqüência direta do teorema de Pitágoras: se um triângulo retângulo tem catetos de comprimento 1, sua hipotenusa terá um comprimento x satisfazendo x2 = 2, e portanto a razão entre a hipotenusa e um cateto não será uma fração de dois inteiros, já que a raiz quadrada de 2 é um número irracional. Parece que isso desgostou profundamente os Pitagóricos pois era uma descoberta inconciliável com a teoria dos números pitagórica. Somente no século IV a.C., Eudoxo, com sua teoria das proporções, redefiniu um conceito mais geral de razão entre dois segmentos, permitindo, em sua teoria, definir-se a razão entre dois segmentos comensuráveis ou não.

Acesso a outros endereços na internet sobre Pitágoras

http://www-history.mcs.st-andrews.ac.uk/history/index.html. Acesso à página sobre Pitágoras no sítio MacTutor History of Mathematics.
http://www.dartmouth.edu/~matc/math5.geometry/unit3/unit3.html.
Pythagoras & Music of the Spheres.
Referências
[1] Anglin, W. S., Mathematics: A Concise History and Philosophy. New York, Springer Verlag, 1994.
[2] Anglin, W. S. e Lambek, J., The Heritage of Thales.
New York, Springer Verlag, 1995.
[3] Boyer, C.B., História da Matemática. São Paulo, Editora Edgard Blücher, 1996.
[4] Eves, H., Introdução à História da Matemática. Campinas, Editora da UNICAMP, 1995.
[5] Honderich, T., The Oxford Companion to Philosophy. Oxford, Oxford University Press, 1995.[6] Rezende, A., Curso de Filosofia. Rio de Janeiro. Jorge Zahar Editor, 1999.

O Teorema de Pitágoras

Yolanda Kioko Saito Furuya

Relacionado ao nome de Pitágoras temos o famoso Teorema de Pitágoras, amplamente utilizado na Matemática Elementar.



Teorema de Pitágoras
Num triângulo retângulo a soma dos quadrados dos catetos é igual ao quadrado da hipotenusa.
Em outros termos, se a e b são os catetos do triângulo retângulo e se c é sua hipotenusa, então a2 + b2 = c2.
A figura abaixo mostra o significado geométrico do Teorema de Pitágoras. A área do quadrado construído sobre a hipotenusa é igual à soma das áreas dos quadrados construídos sobre os catetos.


A tradição matemática ocidental, durante longo tempo, atribuiu a descoberta deste teorema a Pitágoras. Pesquisas históricas mais recentes constataram que o teorema era conhecido pelos babilônios, cerca de 1500 a.C., portanto muito tempo antes de Pitágoras (confira [2], p. 61 e 63). Os chineses o conheciam talvez por volta de 1100 a.C. e os hindus provavelmente cerca de 500 a.C. (confira [1], cap. 12).

Uma das demonstrações mais elegantes do Teorema é conhecida como a demonstração do quadrado chinês.

Dado um triângulo retângulo de catetos a e b e hipotenusa c, construímos dois quadrados de mesmo lado a+b. Em cada um desses quadrados dispomos quatro cópias do triângulo retângulo, como na figura abaixo (em vermelho). A soma das áreas remanescentes do primeiro quadrado (em amarelo e verde) é igual à área remanescente do segundo quadrado (em azul). Portanto a2+b2=c2.

Outra demonstração, também obtida da decomposição do quadrado, é atribuída a Bhaskara, matemático hindu do Século XII. Segundo [2], p. 258, Bhaskara teria apenas desenhado a figura e escrito "Veja!", sem dar maiores explicações.




O quadrado maior, de lado c, é decomposto em quatro cópias do triângulo retângulo e mais um pequeno quadrado de lado a - b.
Existem por volta de 400 demonstrações do Teorema de Pitágoras. Na internet você pode obter mais informações:

· O matemático Einar Andreas Rodland, entrando em uma lanchonete, observou que o desenho do piso podia ser usado para uma demonstração do Teorema de Pitágoras. Você pode ler sobre esta história em http://www.math.uio.no/~einara/McPyth.html.

· Você pode fazer uma inesquecível viagem na Internet e estudar uma visualização animada, construída por Jim Morey, de uma das demonstrações do Teorema de Pitágoras atribuídas a Euclides. O endereço é http://sunsite.ubc.ca/LivingMathematics/V001N01/UBCExamples/Pythagoras/pythagoras.html.

· Alexander Bogomolny apresenta em http://www.cut-the-knot.com/pythagoras/index.html 28 provas do Teorema de Pitágoras assim como acesso a outras páginas da internet relacionadas com o mesmo tema.

· Em http://mathworld.wolfram.com/PythagoreanTheorem.html, página do Eric Weisstein's World of Mathematics, você encontra informações adicionais.

Referências
[1] Boyer, C.B., História da Matemática. São Paulo, Editora Edgard Blücher, 1996.
[2] Eves, H., Introdução à História da Matemática. Campinas, Editora da UNICAMP, 1995.
Fonte: matematica na veia